If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + -21x + 49 = 0 Reorder the terms: 49 + -21x + 9x2 = 0 Solving 49 + -21x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 5.444444444 + -2.333333333x + x2 = 0 Move the constant term to the right: Add '-5.444444444' to each side of the equation. 5.444444444 + -2.333333333x + -5.444444444 + x2 = 0 + -5.444444444 Reorder the terms: 5.444444444 + -5.444444444 + -2.333333333x + x2 = 0 + -5.444444444 Combine like terms: 5.444444444 + -5.444444444 = 0.000000000 0.000000000 + -2.333333333x + x2 = 0 + -5.444444444 -2.333333333x + x2 = 0 + -5.444444444 Combine like terms: 0 + -5.444444444 = -5.444444444 -2.333333333x + x2 = -5.444444444 The x term is -2.333333333x. Take half its coefficient (-1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. -2.333333333x + 1.361111112 + x2 = -5.444444444 + 1.361111112 Reorder the terms: 1.361111112 + -2.333333333x + x2 = -5.444444444 + 1.361111112 Combine like terms: -5.444444444 + 1.361111112 = -4.083333332 1.361111112 + -2.333333333x + x2 = -4.083333332 Factor a perfect square on the left side: (x + -1.166666667)(x + -1.166666667) = -4.083333332 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 4x-9(x+1)=2.65-5x | | 9x-19+6x+4=90 | | (3x^-1)/(y^-1) | | 10squared=4(4+x) | | 3,5y-7.2=4.5y+7.2 | | 4x+102+6x+28=180 | | 3(15)-12=90 | | j-k-o-4-f-a-7-a-d-v-f-g=123 | | 3*15-12=90 | | 3x+65=8x+7 | | 3x-12+5x-18=90 | | 3x-6/2-x=3/2 | | 21xX-175=224 | | y(2)=576 | | 4x+3(2x-y)=8 | | 4=24/p | | .2(25-5k)=21-3 | | 5/4x-4/3=7/6x-2/3 | | 6+30x=20x+30 | | 2m-(3)=31 | | 20x-5=30x+30 | | 35-6x=11-9x | | 53/3 | | 16t+50t^3=64000 | | 5(2-x)=x+4 | | (f/6)-5=1 | | 2x^3-72xy^2= | | 4x-5=14-45 | | 7=8-17+5 | | 3x+120=65-4 | | 2(5x-2)+7x*2=4(7x-2)-8(10x+37,5) | | 5/y-7/y-1/12=1/3 |